Reactions of Co-ordinated Ligands. Part XI.¹ The Ring Opening of Methylenecyclopropanes by Palladium(II)-Nucleophile Systems; Formation of Substituted η^3 -But-3-envl Complexes of Palladium(1)

By Michael Green • and Russell P. Hughes, Department of Inorganic Chemistry, The University, Bristol **BS8 1TS**

trans- and cis-2,3-Dimethoxycarbonylmethylenecyclopropanes react with [Pd(MeCN)₂Cl₂] in dichloromethane to yield isomeric, ring-opened η^3 -[3-chloro-1,2-bis(methoxycarbonyl)but-3-enyl]palladium(II) complexes, via $[Pd(\eta^2-methylenecyclopropane)Cl_2]$ intermediates. Analogous reactions in methanol, ethanol, isopropyl alcohol, and t-butyl alcohol solvents yield isomeric η^3 -[4-alkoxy-1,2-bis(methoxycarbonyl)but-3-enyl]palladium(II) complexes. ¹H and ¹³C N.m.r. data for these, and derived, complexes are reported and discussed in terms of conformational isomerism within the chelating but-3-envl ring. The mechanisms of these ring-opening reactions are discussed in terms of substituted cyclopropylmethyl-palladium intermediates, and the implications with respect to the mechanisms of chloropalladation and alkoxypalladation reactions of olefins are also reviewed.

TRANSITION-METAL promoted reactions of methylenecyclopropanes have aroused considerable recent interest, particularly as to the role of the metal in promoting open-

¹ Part X., M. Bottrill, R. Goddard, M. Green, R. P. Hughes, M. K. Lloyd, B. Lewis, and P. Woodward, J.C.S. Dalton, 1975, 1150.

² R. Noyori, T. Octagi, and H. Takaya, J. Amer. Chem. Soc., 1970, 92, 5780.

ing reactions of the cyclopropane ring.²⁻⁵ We have previously established that methylenecyclopropane (1a), trans-2,3-dimethoxycarbonylmethylenecyclopropane

³ R. Noyori, T. Ishigana, N. Hayashi, and H. Takaya, J. Amer. Chem. Soc., 1973, 95, 1674.
⁴ P. Binger, Angew. Chem. Internat. Edn., 1972, 11, 309.
⁵ T. H. Whitesides and R. W. Slaven, J. Organometallic Chem., 1974, 67, 99.

1976

(1b), and cis-2,3-dimethoxycarbonylmethylenecyclopropane (1c) form a variety of stable η^2 -bonded complexes with Rh^I, Ir^I, Pt⁰, and Pt^{II} systems.⁶ These η^2 -bonded complexes proved to have remarkable stability, the cyclopropane ring remaining intact after prolonged thermolysis and u.v. irradiation.⁶

Previous reports have demonstrated that methylenecyclopropane (1a) and 2,2-diphenylmethylenecyclopropane (1e) reacted with $[Pd(PhCN)_2Cl_2]$ to yield the η^3 allylic complexes (2) and (3) respectively, in which the cyclopropane ring had opened.7 It therefore seemed potentially fruitful to examine the reactions of the transand cis-disubstituted methylenecyclopropanes (lb), (lc), and (1d) with Pd^{II} systems. A preliminary account of this work has appeared.⁸

RESULTS

Prolonged stirring of an equimolar solution of [Pd-(MeCN)₂Cl₂] and trans-2,3-dimethoxycarbonylmethylenecyclopropane (1b) in dichloromethane resulted in a colour change from deep orange-brown to golden yellow. Evaporation yielded a sparingly soluble yellow material of identical reaction of [Pd(MeCN)₂Cl₂] with trans-2,3-dimethoxycarbonyl-2,3-dideuterio-methylenecyclopropane (1c) yielded an analogous complex, the ¹H n.m.r. spectrum of which showed no resonances at τ 5.38 and 8.42. The large coupling constant observed between these two resonances in the protio-complex strongly implied that the cyclopropane ring has been ruptured across the 1,2-bond, since the largest coupling previously observed between these two protons in simple η^2 -bonded transition-metal complexes of (1b) was only 3-4 Hz.6

The most plausible structures for the protio- and deuteriocomplexes were thus formulated as (4a) and (4b) respectively, in which the cyclopropane ring had undergone a ringopening reaction, with migration of a chloride ligand from the metal to the organic moiety, yielding a substituted but-3-envl species η^3 -bonded to palladium.

In agreement with this formulation, only one Cl atom per metal atom in (4a) proved to be metathetically replaceable. Thus complex (4a) reacted with an excess of lithium bromide in acetone to afford the analogous bromide-bridged complex (4c). Similarly, treatment of (4a) with acetylacetonatothallium, hexafluoroacetylacetonatothallium, or cyclopentadienylthallium, yielded the pentane-soluble, monomeric complexes (4d), (4f), and (4g) respectively. Treat-

empirical formula PdCl₂(C₈H₁₀O₄). The ¹H n.m.r. spectrum (Table 1) of this complex exhibited six resonances at τ 6.26 and 6.30 (CO₂Me groups), 5.01 and 5.24 (characteristic of a vinylidene olefin co-ordinated to PdII),⁹ and at 5.38 and 8.42. A large coupling constant of 10 Hz was observed between the latter two proton resonances. An

⁶ M. Green, J. A. K. Howard, R. P. Hughes, S. C. Kellett, and P. Woodward, *J.C.S. Dalton*, 1975, 2007. ⁷ R. Noyori and H. Takaya, *Chem. Comm.*, 1969, 525.

ment of the deuterio-complex (4b) with acetylacetonatothallium afforded the monomeric complex (4e). The ¹H n.m.r. (Table 1) and ¹³C n.m.r. (Table 2) of these complexes were in complete agreement with their formulation as substituted η^3 -but-3-envl complexes of Pd^{II}.

If the reaction between $[Pd(MeCN)_2Cl_2]$ and (1b) was

⁸ M. Green and R. P. Hughes, J.C.S. Chem. Comm., 1974, 686. ⁹ R. P. Hughes and J. Powell, J. Organometallic Chem., 1973, 60, 387.

TABLE 1

¹H N.m.r. data for η^3 -but-3-enyl complexes of palladium(II) (CDCl_3; 34 °C; 100 MHz)

Com- plex (4a)	X Cl	R¹ H	R¹ CO₂Me	R³ CO₂Me	R⁴ H	R⁵ Ci	R⁰ H	R' H	R ¹ 8.42 (d)	R ^z 6.26 (s)	R^s 6.30 (s)	τ(multipli R ⁴ 5.38 (d)	city), J/Hz R ^s	R [●] 5.24 (d	R ⁷ 5.04 (d)	x
(4b)	Cl	D	CO₂Me	CO ₂ Me	D	Cl	н	н	$J_{1,4} = 10$	6.26 (s)	6.30 (s)	$J_{1,4} = 10$		5.24 (d)	5.01 (d)	
(4c)	Br	н	CO ₂ Me	CO ₂ Me	н	Cl	н	н	8.40 (d)	6.20 (s)	6.30 (s)	5.40 (d)		5.25 (d)	5.00 (d)	
(4 d)	acac	н	CO ₂ Me	CO₂Me	н	CI	н	н	$J_{1,4} = 10$ 8.43 (d) $J_{1,4} = 9$	6.24 (s)	6.28 (s)	$J_{1,4} = 10$ 5.32 (d) $J_{1,4} = 9$ $I_{4,4} = 1$		5.36 (dd) $J_{4,6} = 1$	= 1 5.18 (d)	8.02 (s), CH ₃ 8.07 (s), CH ₃ 4.68 (s) CH
(4e)	acac	D	CO ₂ Me	CO ₂ Me	D	Cl	н	н		6.24 (s)	6.28 (s)	J 678 1		5.36 (d)	5.18 (d)	8.02 (s), CH ₃
(4f)	hfacac	н	CO₂Me	CO₂Me	н	CI	Н	н	8.25 (d) $J_{1,4} = 9$	6.25 (s)	6.26 (s)	5.28 (dd) $J_{1,4} = 9$		5.10 (dd) $J_{4,6} = 1$	5.04 (d)	4.68 (s), CH 3.86 (s), CH
(4g)	$C_{\delta}H_{\delta}$	н	CO₂Me	CO₂Me	н	CI	н	н	$\substack{8.38 ({\rm d}) \\ J_{1,4} = 9}$	6.25 (s)	6.37 (s)	$J_{4,6} = 1$ 5.38 (dd) $J_{1,4} = 1$		5.86 (dd)	f = 2 6.46 (d)	4.36 (s) C5H5
(8a)	C1	CO ₂ Me	н	CO ₂ Me	н	CI	н	н	6.30 (s)	6.89 (d) $J_{2,4} = 10$	6.39 (s)	$J_{4,6} = 1$ 5.87 (dd) $J_{2,4} = 10$ $J_{2,4} = 2$		$J_{5,6}$ 5.11 (dd) $J_{4,6} = 2$	= 2 4.49 (d)	
(8b)	acac	CO ₂ Me	н	CO₂Me	н	Cl	н	н	6.30 (s)	7.01 (d) $J_{2,4} = 10$	6.43 (s)	$J_{4,6} = 2$ 5.87 (dd) $J_{2,4} = 10$		$J_{5,6}$ 5.24 (dd) $J_{4,6} = 2$	= 2 4.57 (d)	7.96 (s), CH 8.06 (s), CH _s
(8c)	C₅H₅	CO ₂ Me	н	CO₂Me	н	Cl	н	н	6.35 (s)	6.55 (d)	6.52 (s)	$J_{4,6} = 2$ 6.09 (dd)		$J_{5.70}$ (dd)	= 2 5.80 (d)	4.66 (s), CH 4.26 (s) C ₅ H ₅
(6a)	Cl a	н	CO₂Me	CO₂Me	н	н	ОМе	н	8.53 (d)	$J_{2,4} = 10$ 6.20 (s)	6.23 (s)	$J_{2,4} = 10 \\ J_{4,6} = 2 \\ 5.93 \text{ (dd)}$	5.70 (dd)	$J_{4,6} = 2$ $J_{5,6}$ 6.34 (s)	= 2 2.39 (d)	
(7-)	CI -	60 M			60 M				$J_{1,4} = 9$	7 04 (1)	•	$J_{1,4} = 9 \\ J_{4,5} = 10$	$J_{5,7} = 10$ $J_{4,5} = 10$		$J_{5,7} = 10$	
(7a)	CI 4	CO ₂ Me	н	н	CO ² Me	н	Оме	н	6.14 (S)	$J_{2,3} = 6$	<i>ca</i> . 6.2	6.3ə (s)	$J_{3,5} = 10$ $J_{5,7} = 10$	6.34 (s)	$J_{5,7} = 10$	
(6b)	Cl 4	D	CO₂Me	CO ₂ Me	D	н	OMe	н		6.20 (s)	6.23 (s)		5.70 (d) $I_{5.7} = 10$	6.34 (s)	2.39 (d) $I_{5.7} = 10$	
(7b)	Cla	CO₂Me	D	D	CO₂Me	н	OMe	н	6.14 (s)			6.35 (s)	5.70 (d) $J_{5.7} = 10$	6.34 (s)	2.69 (d) $I_{5.7} = 10$	
(6c)	Br 4	н	CO₃Me	CO ₂ Me	н	н	OMe	н	8.52 (d) $J_{1,4} = 9$	6.20 (s)	6.21 (s)	5.90 (dd) $J_{1,4} = 9$	5.75 (dd) $J_{4,5} \approx 10$	6.30 (s)	2.35 (d) $J_{5,7} = 10$	
(7c)	Br 4	CO₂Me	н	н	CO ₂ Me	н	ОМе	н	6.14 (s)	7.80 (d) $J_{2,3} = 6$	ca. 6.2 b	$f_{4,s} \equiv 10$ 6.30 (s)	$J_{5,7} = 10$ 5.70 (dd) $J_{4,5} = 10$ I = 10	6.34 (s)	${}^{2.70}_{J_{5,7}}$ (d) ${}^{J_{5,7}}_{J_{5,7}} = 10$	
(6d)	acac ¢	н	CO₂Me	CO ₂ Me	н	н	ОМе	н	8.53 (d) $J_{1,4} = 8$	6.21 (s)	6.24 (s)	6.00 (dd) $J_{1,4} = 9$	$J_{5,7} = 10$ 5.71 (dd) $J_{4,5} = 10$	6.35 (s)	${2.47 \ (d) \over J_{5,7}}=10$	8.02 (s), CH ₃ 8.15 (s), CH ₃
(7d)	acac ¢	CO₂Me	н	н	CO₂Me	н	ОМе	H	6.27 (s)	7.86 (d) $J_{3,3} = 6$	ca. 6.2 b	$J_{4,5} = 10$ 6.30 (s)	$J_{5,7} = 10;$ 5.71 (dd) $J_{4,5} = 10$	6.35 (s)	$^{2.74}_{J_{5,7}}$ (d)	4.74 (s), CH 8.06 (s), CH 8.15 (s), CH
(6e)	Cl	н	CO₂Me	CO₃Me	н	н	OCH₂Me	н	8.52 (d) $J_{1,4} = 9$	6.21 (s)	6.24 (s)	5.91 (dd) $J_{1,4} = 9$	$J_{5,7} = 10$ 5.72 (dd) $J_{4,5} = 10$	6.21 (q), C 8.66 (t), CH	$H_2 2.40 (d)$ $I_3 J_{5,7} = 10$	4.74 (s), CH
(7e)	Cl	CO₂Me	н	н	CO₃Me	н	OCH₂Me	H	6.13 (s)	7.82 (d) $J_{2,3} = 6$	ca. 6.2 b	$J_{4,5} = 10$ 6.33 (s)	$J_{5,7} = 10$ 5.70 (dd) $J_{3,5} = 10$	J = 7 6.20 (q), C 8.64 (t), H ₃	$H_{3} 2.70 (d) J_{5,7} = 10$	
(6f)	Cl	н	CO₂Me	CO2Me	н	н	OCHMe ₂	H	8.40 (d) $J_{1,4} = 8$	6.26 (s)	6.38 (s)	$\begin{array}{l} 6.02 \ (\text{dd}) \\ J_{1,4} = 9 \\ J_{4,5} = 10 \end{array}$	$J_{5,7} = 10$ 5.70 (dd) $J_{4,5} = 10$ $J_{5,7} = 11$	J = 7 5.50 (m), C 8.59 (d), Cl 8.68 (d), Cl	$H_{2,33}$ (d) $H_{2} J_{5,7} = 1$ H_{3}	1
(7f)	Cl	CO₂Me	н	н	CO ₃ Me	н	OCHMe ₂	Н	6.30 (s)	7.87 (d) $J_{2,3} = 6$	ca. 6.2 b	6.38 (s)	5.72 (dd) $J_{3,5} = 10$ $I_{5,5} = 11$	J = 6 5.50 (m), C 8.59 (d), Cl 8.68(d) CE	$H_{3} J_{5,7} = 1$	1
(6g)	Cl	н	CO₂Me	CO₂Me	н	н	н	OCHMe	$_{2}8.20$ (d) $J_{1:4} = 8$	6.38 (s)	6.40 (s)	6.02 (dd) $J_{114} = 8$	5.75 (dd) $J_{415} = 10$	J = 6 5.50 (m), C 8.59 (d), Cl	-3 H 3.30 (d) H J 5.6 = 4	
(7g)	CI	CO₂Me	н	н	CO ₂ Me	н	н	OCHMe	26.38 (s)	8.18 (d) $J_{2,3} = 6$	ca. 6.2 b	$J_{4,5} = 10$ 6.40 (s)	$J_{5,6} = 5$ 5.70 (dd) $J_{3,5} = 10$	8.68 (d), CH 5.50 (m), C 8.59 (d), Cl	H_3 H 3.28 (d) H $J_{5,5} = 4$	
(6h)	Cl	н	CO₂Me	CO ₂ Me	н	н	н	OCMe ₃	$^{8.30}_{J_{1,4}} = 8$	6.35 (s)	6.42 (s)	6.00 (dd) $J_{1,4} = 8$	$J_{4,6} = 4$ 5.75 (dd) $J_{4,5} = 10$	8.68 (d), CI 8.90 (s)	J_{3} 3.30 (d) $J_{5,6} = 4$	
(7h)	Cl	CO₂Me	н	н	CO₂Me	H	н	OCMe₃	6.38 (s)	8.00 (d) $J_{2,3} = 6$	ca. 6.2 b	$J_{4,5} = 10$ 6.40 (s)	$J_{5,8} = 4$ 5.70 (dd) $J_{3,5} = 10$	8.89 (s)	$3.26 (d) J_{5,8} = 4$	
(9a)	Cl	CO₂Me	н	CO₂Me	н	н	ОМе	н	6.30 (s)	6.89 (d) $J_{2,4} = 10$	6.39 (s)	5.87 (dd) $J_{2,4} = 10$	$J_{5,6} = 4 5.70 (dd) J_{4,5} = 9$	6.35 (s)	$^{2.40}_{J_{5,7}}$ (d)	
(10a)	Cl	н	CO₂Me	н	CO₂Me	н	ОМе	н	7.32 (d) $J_{1,3} = 9$	6.30 (s)	$5.86 (dd) J_{1,3} = 9$	$J_{4,5} = 9$ 6.40 (s)	$J_{5,7} = 11$ 5.70 (dd) $J_{3,5} = 10$	6.34 (s)	${2.13 \ (d) \over J_{5,7} = 11}$	
(9b)	Cl	CO₂Me	н	CO ₂ Me	н	н	ОСМе _з	н	6.30 (s)	$6.90 (d) J_{2,4} = 10$	$J_{3,5} = 10$ 6.40 (s)	$5.85 (dd) J_{2,4} = 10$	$J_{5,7} = 11$ 5.70 (dd) $J_{4,5} = 9$	8.90 (s)	$\begin{array}{c} 2.38 \ (\mathrm{d}) \\ J_{5,7} = 11 \end{array}$	
(10b)	Cl	н	CO₂Me	н	CO₂Me	н	OCMe ₃	н	7.30 (d) $J_{1,3} = 9$	6.32 (s)	5.84 (dd) $J_{1,3} = 9$ $J_{3,5} = 10$	$J_{4,5} = 9$ 6.42 (s)	$J_{5,7} = 11 5.70 (dd) J_{3,5} = 10 J_{5,7} = 11$	8.88 (s)	2.15 (d) $J_{5,7} = 11$	

^a Ratio of isomers (6a): (7a), (6b): (7b), (6c): (7c), (6e): (7e) is *ca.* 2:1 by integration. ^b Obscured by CO₂Me resonances. ^c Ratio of isomers (6d): (7d) is 1:1 by integration.

worked up after only 1 h, instead of allowing the solution to attain its final golden yellow colour, a brown, sparingly soluble solid was obtained, which was shown by microanalysis to be isomeric with (4a). This complex proved too insoluble for ¹H and ¹³C n.m.r. spectra to be recorded, but it reacted rapidly with an excess of pyridine in dichloroobserved. The solution nature of this complex was assigned, on the basis of ¹H and ¹³C n.m.r. spectroscopy, as a mixture of the isomeric forms (6a) and (7a), differing in the conformation of the CO₂Me groups with respect to the coordinated olefin.[†] Similarly, the deuteriated (1c) yielded a mixture of isomers (6b) and (7b).

TABLE 2 ¹³C N.m.r. data for η^3 -But-3-envl complexes of palladium(II) (CDCl₃; 34 °C; 25.15 MHz)

 $R^{5} C B A^{2} R^{4} R^{3} R^{2} X$

Com- plex	x	R1	R ²	R3	R4	R⁴	R ⁶	CA	СВ	CG	δ(p.p.n CD	n. downfiel R ¹	d from inter R ²	rnal SiMe ₄) R ⁸	R4	R ⁶	x
(4 d)	acac	Н	CO ₂ Me	CO ₂ Me	Н	CI	Н	7.70	55.57	90.95	78.63		175.64 a C=O; 52.42 a OCH ₃	170.85 a C=O; 51.39 a OCH ₃			188.51 184.99 CO; 27.54 26.39 CH ₃ ; 99.81 CH
(4f)	hfacac	Н	CO2Me	CO₂Me	н	Cl	н	8.01	55.45	91.98	80.15		175.89 a C=O 52.72 a OCH ₃	619.88 a C=O 52.00 a OCH ₃			176.67 JC-F = 34 C = 0; 117.37 JC-F = 285 $CF_3;$ 90.40 CH
(8a)	CI	CO₂Me	н	CO2Me	н	Cl	н	8.05	55.98	89.90	78.33	172.35 a C=O 52.34		168.54 a C=O; 52.34 OCH			50.40 CH
(8c)	$\eta^{b}C_5H_5$	CO₂Me	н	CO ₂ Me	н	Cl	н	-9.18	55.98	77.82	62.47	176.90 a C=O; 51.55 a OCH ₂		170.77 C=O; 51.06 a OCH			97.21
6a)	C1	н	CO₂Me	CO₂Me	н	н	ОМе	-2.55	44.29	43.14	143.31	3	174.80 a C=O; 52.42 a OCH,	170.73 a C=O; 52.06 a OCH.		60.19	
7a)	CI	CO₂Me	н	н	CO₂Me	н	ОМе	6.87	38.71	41.32	141.85	175.00 a C=O; 52.40 a OCH ₃			172.98 a C=O; 51.33 a OCH ₃	60.55	
(6e)	Cl	н	CO₂Me	CO2Me	н	н	OCH₂M€	e —2.79	44.2	43.14	142.70	- •	174.86 a C=O; 52.36 a OCH ₃	170.79 a C=O; 51.99 a OCH ₂	•	69.35 CH ₂ ; 14.13 CH ₃	
(7e)	CI	CO2Me	н	н	CO2Me	н	ОМе	6.67	38.34	41.07	141.06	174.80 a C=O; 52.36 a OCH ₃	-3	-0	173.03 C=O; 51.20 a OCH ₃	69.83 CH ₂ ; 14.13 CH ₃	

a The assignment of individual C=O and OCH₃ resonances between individual isomers is not unambiguous. Some assignments may therefore prove to be revised.

methane to yield $[Pd(pyridine)_2Cl_2]$ and unchanged (1b).* The brown complex was therefore formulated as the dimeric η^2 -bonded olefin complex (5a). A suspension of (5a) in a large volume of dichloromethane yielded, after prolonged stirring, a yellow solution from which complex (4a) could be isolated.

Similarly, reaction of $[Pd(MeCN)_2Br_2]$ with (1b) in dichloromethane solution resulted in the precipitation of an insoluble brown solid which reacted with pyridine to yield $[Pd(pyridine)_2Br_2]$ and (1b); this complex was therefore formulated as (5b). No reaction of (5b) to yield a ringopened product analogous to (4a) could be effected by prolonged stirring in dichloromethane.

Reaction of equimolar amounts of $[Pd(MeCN)_2Cl_2]$ and (1b) in methanol solution, in the presence of sodium carbonate, rapidly produced a golden yellow solution, from which yellow crystals of stoicheiometry $PdCl(OCH_3)$ - $(C_8H_{10}O_4)$ were isolated; no traces of complex (4a) were

* η^3 -But-3-envl complexes of Pd^{II} react with two molar equivalents of pyridine to yield stable η^1 -but-3-envl complexes.¹⁰

The η^2 -bonded olefin complex (5b) reacted smoothly in methanol in the presence of Na₂CO₃, to afford the corresponding bromide-bridged complex, shown by ¹H n.m.r. spectroscopy to exist as a mixture of (6c) and (7c). The isomeric mixture of (6a) and (7a) reacted with acetylacetonatothallium to afford the corresponding acetylacetonatosystem, which was also shown by ¹H n.m.r. spectroscopy to exist as a conformationally isomeric pair (6d) and (7d).

Reaction of $[Pd(MeCN)_2Cl_2]$ with (1b) in ethanol, in the presence of Na₂CO₃, yielded the conformationally isomeric pair of complexes (6e) and (7e). In all the complexes (6a—e) and (7a—e) the substituent geometry of the coordinated olefinic function was shown to be exclusively *trans* by ¹H n.m.r. spectroscopy, the coupling constant of 10 Hz being characteristic of a *trans*-disubstituted alkoxyolefin.¹¹

The reaction of $[Pd(MeCN)_2Cl_2]$ with (1b) in isopropyl alcohol, however, gave rise to an analogous ring-opening reaction but yielded a mixture of four isomeric products; these were the conformationally isomeric pair of complexes (6f) and (7f), in which the substituent geometry of the

¹⁰ R. Goddard, M. Green, R. P. Hughes, and P. Woodward, *J.C.S. Dalton*, following paper.

 $[\]dagger$ That these are indeed conformational isomers is demonstrated by the reaction of the isomeric mixture with pyridine, to yield a single, preferred conformational isomer of the η^1 -bonded ligand complex.¹⁰

co-ordinated alkoxy-olefin was shown to be *trans* by virtue of the coupling constant of 10 Hz between the two olefinic protons, and the conformationally isomeric pair of complexes (6g) and (7g), in which the co-ordinated alkoxy-olefin was shown to have a *cis*-geometry, the corresponding coupling constant ¹¹ being only 4 Hz.*

this solution yielded a yellow complex, formulated on the basis of microanalysis, ¹H, and ¹³C n.m.r. spectra as the single isomer (8a), isomeric with (4a). Treatment of complex (8a) with acetylacetonatothallium, or cyclopentadienyl-thallium, yielded the monomeric, pentane-soluble, complexes (8b) and (8c) respectively.

In contrast, reaction of $[Pd(MeCN)_2Cl_2]$ with (1b) in tbutyl alcohol yielded the conformationally isomeric pair of complexes (6h) and (7h), in which the geometry of the coordinated alkoxy-olefin was shown by ¹H n.m.r. spectroscopy to be exclusively *cis*.

Analogous reactions of $[Pd(MeCN)_2Cl_2]$ with *cis*-2,3-dimethoxycarbonylmethylenecyclopropane (1d) in dichloromethane and alcoholic solvents were also investigated. Thus, reaction of $[Pd(MeCN)_2Cl_2]$ with an equimolar amount of (1d) in dichloromethane solution resulted in a much faster reaction than was observed with (1b), yielding a golden yellow solution in less than 1 h. Evaporation of

* Reaction of this mixture of four isomers with pyridine yields an isomeric mixture of two η^{1} -bonded complexes, the only observable isomerism being that about the now unco-ordinated alkoxy-olefin.¹⁰

Reaction of $[Pd(MeCN)_2Cl_2]$ with (1d) in methanol solution, in the presence of sodium carbonate, yielded a mixture of the conformationally isomeric pair of complexes (9a) and (10a), in which the geometry of the co-ordinated alkoxy-olefin was shown to be exclusively *trans*, in agreement with the observations concerning the analogous reaction of (1b). However, in t-butyl alcohol solution $[Pd(MeCN)_2Cl_2]$ and (1d) reacted smoothly to produce only a mixture of the conformational isomeric pair of complexes (9b) and (10b), in which the geometry of the co-ordinated alkoxy-olefin was shown to be exclusively *trans*, in contrast to the corresponding reaction of (1b) which produced an exclusively *cis*-alkoxy-olefin.

¹¹ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 'High Resolution Nuclear Magnetic Resonance Spectroscopy,' Pergamon Press, Oxford 1966, vol. 2. DISCUSSION

The Pd^{II}-promoted ring-opening of both *trans-* and *cis-2,3-*dimethoxycarbonylmethylenecyclopropane, (1b), and (1c), occurs stereospecifically in dichloromethane solution, to yield the isomeric, substituted η^3 -but-3-enyl complexes (4a) and (8a) respectively. In the reaction of the *trans-*diester (1b), an intermediate η^2 -bonded olefin complex can be isolated from an interceptory work-up of the reaction mixture. That (5a) is indeed a key intermediate is evidenced from the observation that a suspension of (5a) in dichloromethane slowly rearranges to yield (4a). However, the ring-opening reaction of the *cis-*diester (1c), after co-ordination to Pd^{II}, is much more rapid than that of (1b), and no η^2 -bonded complex intermediate analogous to (5a) was observed.

The ring-opening reaction in dichloromethane is stereospecific in two respects; the migrating chloride ligand becomes attached exclusively to the internal ole-finic carbon atom, generating a co-ordinated vinylidene olefin, and the ring-opening proceeds with retention, rather than inversion, of configuration at the cyclopropane carbon atom which finally becomes σ -bonded to palladium.*

In alcoholic solution both the *trans*- and *cis*-diesters (1b) and (1c) undergo an analogous ring-opening reaction with $[Pd(MeCN)_2Cl_2]$, yielding an analogous η^3 -but-3-enyl skeleton, but no chloride is incorporated into the ororganic ligand. Instead, alkoxide is incorporated exclusively at the terminal olefinic carbon atom, generating a disubstituted alkoxy-olefin.

All the η^3 -but-3-enyl complexes produced in alcoholic solution, *i.e.* complexes (6), (7), (9), and (10), exhibit conformational isomerism within the chelating but-3-enyl ring in solution. However, complexes (4) and (8), which have a chlorine atom in the 3-position of the but-3-enyl ligand, exhibit ¹H and ¹³C n.m.r. spectra consistent with the presence of only one of the two possible ring conformers.

In complexes (4) and (8), molecular models strongly suggest that the dominant steric interaction is between the chlorine atom in the 3-position and the CO_2Me substituent in the 2-position. To minimise this interaction it is necessary for the 2-CO₂Me substituent to occupy a pseudo-*exo*-position as drawn for both (4) and (8). The 1-CO₂Me group in complexes (4) must therefore occupy a pseudo-*syn*-position as drawn, and that in complexes (8) a pseudo-*anti*-position \dagger as drawn, since their geometric orientation with respect to the 2-CO₂Me group is predetermined by the *trans*- or *cis*-configurations of the diester precursors. It is noteworthy that the chemical shifts of the protons in the 1-position of complexes (4) and (8) (Table 1) exhibit the same trend as that shown in η^3 -propenyl complexes ^{12,13} in that the pseudoanti-proton in complexes (4) resonates at much higher field than its pseudo-syn-counterpart in complexes (8).

In the alkoxy-olefin complexes (6), (7), (9), and (10), there is no substituent in the 3-position to interact sterically with the 2-CO₂Me group. This group can therefore occupy a pseudo-exo [as in isomers (6)] or pseudo-endo [as in isomers (7)] position, giving rise to conformational isomers. The ¹H n.m.r. assignments for each isomer are based on the assignments for the single conformational isomers observed in complexes (4) and (8). The ratio of conformational isomers must be thermodynamically determined, and is dependent upon the other ligands present on the metal. Thus, the ratio of (6a) : (7a), (6b) : (7c), and (6e) : (7e) is 2:1 in CDCl₃ solution, but the ratio in the acetylacetonate complexes (6d): (7d) is 1:1. The equilibrium between conformational isomers must therefore be dynamic since a 2:1 ratio of (6a): (7a) converts into a 1:1 ratio of (6d) : (7d). Interconversion of conformational isomers can only be achieved by dissociation of the co-ordinated olefin, rotation about the 2-3 bond of the now η^1 -but-3-envl ligand, and reformation of the olefin-metal bond.

The reaction of [Pd(MeCN)₂Cl₂] with the transdiesters (1b) in alcoholic solution also gives rise, in some cases, to geometrically isomeric products, differing in the geometry, trans or cis, of the substituents on the coordinated alkoxy-olefin. Whether the geometry is trans or cis, or a mixture of both, is apparently dependent upon the bulkiness of the alkoxide substituent. Thus, for methoxide and ethoxide, the olefin geometry is exclusively trans, for isopropoxide a mixture of trans : cis in the ratio of ca. 1:1 is obtained, and for t-butoxide the geometry is exclusively cis. The reaction of [Pd(MeCN)₂Cl₂] with the *cis*-diester (1d) in either methanol or t-butyl alcohol shows no variations with alkoxide bulk, exclusively trans-olefin geometries being obtained in both cases. Some steric discrimination must, therefore, occur in the reaction pathway for the trans-diester which is not manifested in the corresponding reaction of the cis-diester.

Any mechanistic interpretation must, therefore, account for the differences in product geometries, the different site of attachment of chloride and alkoxide to the ring-opened skeleton, and the much faster rate of ringopening observed for the *cis*-diester compared to the *trans*-diester in dichloromethane solution, together with the generally faster rates of reaction in alcohol solvents compared to dichloromethane.

The simplest mechanism for formation of complex (4a) from $[Pd(MeCN)_2Cl_2]$ and the *trans*-diester (1b), *via* the intermediacy of (5a), is depicted in Scheme 1. Chloropalladation of the co-ordinated olefin as shown generates a substituted cyclopropylmethyl-palladium species, which is expected to ring-open in a concerted, low-energy fashion as shown. This palladium(II)-promoted cyclopropylmethyl to but-3-enyl interconversion is completely analogous to the well-defined nortricyclenyl to norbornenyl

^{*} Retention is confirmed in a crystal structure of the η^{1-} bonded complex derived from reaction of complex (8a) with pyridine.^{10}

[†] The syn and anti terminology refers, respectively, to whether the 1-CO₂Me group points in the same, or opposite, direction to that of the Cl atom in the 3-position, by analogy with η^3 -propenyl ligand systems.^{12,13}

¹² S. D. Robinson and B. L. Shaw, J. Chem. Soc., 1963, 4806.

¹³ H. C. Dehm and J. C. W. Chien, J. Amer. Chem. Soc., 1960, **82**, 4429.

interconversion.¹⁴ It should be noted that in the cyclopropylmethyl intermediate derived from the *trans*diester there are two distinct bonds in the cyclopropane ring which may be cleaved in the ring-opening process. The one depicted in Scheme 1 leads directly to the preferred conformation of the product (4a). Alternative endo- CO_2Me group with ligands *cis* to itself. However, in the analogous η^2 -bonded complexes of the *cis*-diester (1d), in which both CO_2Me groups are presumably *exo* with respect to the metal, propeller rotation was shown to be fast at ambient temperature.⁶ By analogy, therefore, propeller rotation of the *trans*-diester ligand in

SCHEME 1

cleavage of the other 1,2-bond would lead to a conformational isomer of (4a), which would then rearrange by a dissociative route. It is impossible to distinguish which, if any, bond is preferentially cleaved.

The same reaction product arises whether the initial chloropalladation occurs in a *cis*-fashion, *i.e.* a *cis*-ligand migration reaction, or in a *trans*-fashion by nucleophilic attack by external chloride ion. Definitive examples of both processes have been recently reported.¹⁵⁻¹⁷ However, the following arguments strongly imply a *cis*-chloropalladation reaction.

A prerequisite for a *cis*-ligand migration reaction to a co-ordinated olefin is normally considered to involve a propeller-type olefin rotation around the metal-olefin bonding axis, to generate a planar four-centre intermediate in which the axis of the olefin lies in the square-plane of co-ordination of the metal.^{18,19} It has previously been shown that propeller rotation of the olefinic ligand in η^2 -bonded complexes of Rh^I and Ir^I with the *trans*-diesters (1b) is sterically impeded by interaction of the

 E. Bau, R. P. Hughes, and J. Powell, J. Organometallic Chem., 1974, 69, 455; and references cited therein.
B. E. Mann, P. M. Bailey, and P. M. Maitlis, J. Amer. Chem.

¹⁶ W. T. Wipke and G. L. Goeke, J. Amer. Chem. Soc., 1974, 96, 4244.

(5a) is expected to be a relatively high-energy reaction; consequently the planar four-centre intermediate required for *cis*-chloropalladation is not readily achieved. Such an intermediate should readily be obtainable in a Pd^{II} complex of the *cis*-diester, with both CO_2Me groups *exo*, since propeller rotation should be a low-energy process. This argument explains the markedly faster rate of production of ring-opened complexes (8a) from (1c), compared to that of (4a) from (1b), and also the stability of (5a), and strongly implies that chloropalladation is the rate-determining step for the overall reaction sequence.²⁰

An interesting corollary to this argument is that, in this system, *cis*-chloropalladation, where sterically possible, must be a far faster process than *trans*-chloropalladation.²⁰ It is notable that examples of *trans*chloropalladation were only found in systems where the required transition state geometry for *cis*-chloropalladation is sterically forbidden; ^{16,17} indeed, *trans*-chloropalladation of intermediate (5a) cannot be definitely excluded.

¹⁷ G. Wiger, G. Albels, and M. F. Rettig, *J.C.S. Dalton*, 1974, 2242.

¹⁸ B. L. Shaw, Chem. Comm., 1968, 464.

¹⁵ B. E. Mann, P. M. Bailey, and P. M. Maitlis, J. Amer. Chem. Soc., 1975, **97**, 1275; and references cited therein.

¹⁹ P. M. Maitlis, 'The Organic Chemistry of Palladium,' Academic Press, London, vol. 1, p. 137.

²⁰ P. M. Henry, J. Org. Chem., 1972, 37, 2443.

The reaction of the *trans*-diester (1b) with $[Pd(MeCN)_2-Cl_2]$ in alcoholic solvents proceeds much faster than in dichloromethane, to yield a mixture of ring-opened conformers. The proposed mechanism is depicted in Scheme 2, and presumably proceeds *via* the intermediacy

provided the alkoxide is sufficiently bulky to sense the asymmetry, thereby giving rise to a kinetically controlled cis-olefin geometry. In the reaction of the *trans*-diester depicted in Scheme 2, such asymmetry can arise either in the transition state(s) for the 1,2-hydrogen shift, or in

of (5a). *trans*-Alkoxypalladation of (5a) must be fast, compared to the *cis*-chloropalladation process, since products derived from the latter reaction are not observed. This is not surprising since there is an infinite concentration of external solvent nucleophile available, and also since no olefin rotation is required to achieve the transition-state geometry for *trans*-alkoxypalladation.

It is also remarkable that the external alkoxide nucleophile must attack exclusively at the terminal olefinic carbon atom, in order to achieve the observed product structure, whereas the internally derived chlorine in the *cis*-chloropalladation reaction attacks exclusively at the internal carbon. The reasons for such selectivity are as yet unknown, yet precedence can be found in the reaction of allene with palladium halides in benzene or methanol.^{21,22} The remarkable similarity in the nature of bonding of allene and methylenecyclopropane to transition metals has been discussed elsewhere; ⁶ we now find a parallel in their chemical reactions.

Attack of alkoxide on the terminal carbon atom of coordinated (1b) requires a subsequent 1,2-hydrogen shift, presumably via the metal as shown, to generate the cyclopropylmethyl-palladium species which provides a low-energy ring-opening route. The steric discrimination with increasing alkoxide bulk, leading to trans- or cis-olefin geometries in the final products derived from (1b), must arise in an unsymmetrical transition state, the ring-cleavage step, or in both. It is therefore not possible to identify the exact nature of this remarkable steric control. However, both these transition states for the corresponding reaction of the *cis*-diester are symmetrical, in that both CO_2Me groups are on the same side of the cyclopropane ring. The chosen reaction path therefore leads to the more thermodynamically stable *trans*-olefin geometry in the product.

EXPERIMENTAL

All reactions were carried out under an atmosphere of dry, oxygen-free nitrogen.

ⁱH N.m.r. spectra were recorded on a Varian Associates HA-100 spectrometer at 100 MHz. ¹³C N.m.r. spectra were recorded on a Jeol JNM-PFT-100 spectrometer, operating in the Fourier-transform mode, at 25.15 MHz.

trans-2,3-Dimethoxycarbonylmethylenecyclopropane,²³ and trans-2,3-dimethoxycarbonyl-2,3-dideuteriomethylenecyclopropane²⁴ were prepared by literature methods.

Reactions of $[Pd(MeCN)_2Cl_2]$ with trans-2,3-Dimethoxycarbonylmethylenecyclopropane, (1b).—(a) In dichloromethane. A solution of $[Pd(MeCN)_2Cl_2]$ (1.53 g, 5.9 mmol) and trans-2,3-dimethoxycarbonylmethylenecyclopropane (1.00 g, 5.9 mmol) in dichloromethane (150 cm³) was stirred (21 °C; 48 h), after which time the initial orange solution had faded to a pale golden-yellow colour. The solution was reduced in volume to *ca*. 50 cm³ and pentane (200 cm³) was added

²¹ R. G. Schultz, Tetrahedron, 1964, 20, 2809.

²² M. S. Lupin, J. Powell, and B. L. Shaw, J. Chem. Soc. (A), 1966, 1687.

²³ I. S. Krull, J. Organometallic Chem., 1973, 57, 363, and references cited therein.

²⁴ A. T. Bottini and J. D. Roberts, J. Org. Chem., 1956, 21, 1169.

slowly to precipitate complex (4a) as pale yellow needles (2.00 g, 98%), m.p. 135–139 °C (decomp.) [Found: C, 28.0; H, 3.0. ($C_8H_{10}Cl_2O_4Pd$)₂ requires C, 27.7; H, 2.9%]. Work-up of this reaction mixture after only 1 h yielded an insoluble solid complex (5a) (90%), m.p. 110–115 °C (decomp.) [Found: C, 28.0; H, 3.0. ($C_8H_{10}O_4Pd$)₂ requires C, 27.7; H, 2.9%].

Prolonged stirring (48 h) of a suspension of complex (5a) (0.50 g, 3.5 mmol) in dichloromethane (100 cm³) resulted in a golden-yellow solution. Volume reduction to $ca. 20 \text{ cm}^3$ followed by addition of pentane (100 cm³) yielded *complex* (4a) (0.49 g, 98%), identified by its ¹H n.m.r. spectrum.

A suspension of complex (5a) (0.20 g, 1.4 mmol) in deuteriochloroform (1 cm³) was treated with pyridine (0.22 g, 2.8 mmol). The resultant mixture was stirred (0.5 h) and filtered to yield a golden yellow solid, identified by its i.r. spectrum as $[Pd(pyridine)_2Cl_2]$. The ¹H n.m.r. spectrum of the filtrate showed it to contain only unchanged *trans*-2,3dimethoxycarbonylmethylenecyclopropane. Similarly, prolonged stirring (48 h, 21 °C) of a solution of $[Pd(MeCN)_2 Cl_2]$ (0.50 g, 1.9 mmol) and *trans*-2,3-dimethoxycarbonyl-2,3dideuteriomethylenecyclopropane (0.33 g, 1.9 mmol) in dichloromethane (50 cm³) yielded, after an identical workup procedure, *complex* (4b) (0.65 g, 96%), m.p. 134—138 °C (decomp.) [Found: C, 27.8; H, 3.0. (C₈H₈Cl₂D₂O₄Pd)₂ requires C, 27.5; H, 2.9%].

A solution of complex (4a) (0.50 g, 1.4 mmol) and lithium bromide (2.50 g, 28.7 mmol) in acetone (50 cm³) was stirred (0.5 h, 21 °C), and then evaporated to dryness. Extraction of the residue with dichloromethane (3×50 cm³), concentration of the combined extracts to *ca*. 20 cm³, followed by addition of pentane (100 cm³) precipitated complex (4c) as golden yellow *needles* (0.50 g, 89%), m.p. 120—122 °C (decomp.) (Found: C, 24.7; H, 2.7. C₈H₁₀BrClO₄Pd requires C, 24.5; H, 2.6%).

A solution of complex (4a) (0.50 g, 1.4 mmol) and acetylacetonatothallium(1) (0.48 g, 1.6 mmol) in dichloromethane (20 cm³) was stirred (1 h; 21 °C). Pentane (50 cm³) was added, and the precipitated thallium(1) chloride was removed by filtration through a plug of Kieselguhr. The resultant pale yellow solution was evaporated to dryness and the residue recrystallised from pentane (-30 °C) to yield complex (4d) as pale yellow *needles* (0.50 g, 84%), m.p. 80-82 °C (decomp.) (Found: C, 38.2; H, 4.4; Cl, 9.0. C₁₃H₁₇ClO₆Pd requires C, 38.0; H, 4.2; Cl, 8.6%).

Similarly, complex (4b) (0.20 g, 0.6 mmol) and acetylacetonatothallium (0.20 g, 0.7 mmol) yielded *complex* (4e) as pale yellow *needles* (0.18 g, 76%), m.p. 80–82 °C (decomp.) (Found: C, 37.9; H, 4.1. $C_{13}H_{15}ClD_2O_6Pd$ requires C, 37.8; H, 4.1%).

A solution of complex (4a) (0.50 g, 1.4 mmol) and hexafluoroacetylacetonatothallium (0.60 g, 1.4 mmol) in dichloromethane (20 cm³) was stirred (1 h; 21 °C). Pentane (50 cm³) was added and the resultant suspension was filtered through a Kieselguhr plug. Evaporation of the filtrate and recrystallisation of the residue from pentane (-30 °C) yielded *complex* (4f) as cream *prisms*, m.p. 69–70 °C (decomp.) (Found: C, 29.7; H, 2.3; Cl, 7.1; F, 21.9. $C_{13}H_{11}ClF_6O_6Pd$ requires C, 30.0; H, 2.1; Cl, 6.8; F, 22.0%).

A mixture of complex (4a) (0.30 g, 0.8 mmol) and cyclopentadienylthallium (0.30 g, 1.1 mmol) in dichloromethane (20 cm³) was stirred (2 h; 21 °C), and filtered. Evaporation of the resultant solution to dryness and recrystallisation of the residue from pentane (-30 °C) yielded complex (4g) as red prisms (0.25 g, 77%), m.p. 110—111 °C (decomp.) (Found: C, 41.6; H, 4.2; Cl, 9.8. $C_{13}H_{15}ClO_4Pd$ requires C, 41.1; H, 4.0; Cl, 9.4%).

(b) In methanol. A solution of $[Pd(MeCN)_2Cl_2]$ (1.00 g, 3.8 mmol) and trans-2,3-dimethoxycarbonylmethylenecyclopropane (0.70 g, 4.1 mmol) in methanol (50 cm³) was treated with sodium carbonate (0.21 g, 2.0 mmol), and stirred (10 h; 21 °C). The resultant golden-yellow solution wasevaporated to dryness and the residue was extracted with dichloromethane (3 × 20 cm³). The filtered extracts were combined and evaporated to dryness. Recrystallisation of the residue from dichloromethane-pentane (-30 °C) yielded yellow prisms (1.15 g, 87%), m.p. 106-108 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of conformationally isomeric complexes (6a) and (7a) [Found: C, 31.7; H, 3.9; Cl, 10.6. $(C_9H_{13}ClO_5Pd)_2$ requires C, 31.5; H, 3.8; Cl, 10.3%].

A similar reaction between $[Pd(MeCN)_{2}Cl_{2}]$ (0.50 g, 1.9 mmol), *trans*-2,3-dimethoxycarbonyl-2,3-dideuteriomethylenecyclopropane (0.33 g, 1.9 mmol), and sodium carbonate (0.11 g, 1.0 mmol) in methanol (20 cm³) yielded, after identical work-up, yellow *prisms* (0.60 g, 90%), m.p. 107---108 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of conformationally isomeric *complexes* (6b) and (7b) [Found: C, 31.5; H, 3.9. (C₉H₁₁ClD₂O₅Pd)₂ requires C, 31.3; H, 3.8%].

A solution of complexes (6a) and (7a) (0.20 g, 0.6 mmol) and acetylacetonatothallium (0.20 g, 0.7 mmol) in dichloromethane (20 cm³) was stirred (1 h; 21 °C). Pentane (50 cm³) was added and the resultant suspension was filtered through a Kieselguhr plug. Evaporation of the filtrate to dryness, and recrystallisation of the residue from pentane (-30 °C) yielded cream *needles* (0.21 g, 89%), m.p. 80–81 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of the conformationally isomeric complexes (6d) and (7d) (Found: C, 41.6; H, 4.9. C₁₄H₂₀O₇Pd requires C, 41.3; H, 5.0%).

(c) In ethanol. A mixture of $[Pd(MeCN)_2Cl_2]$ (1.00 g, 3.8 mmol), trans-2,3-dimethoxycarbonylmethylenecyclopropane (0.80 g, 4.7 mmol), and sodium carbonate (0.21 g, 2.0 mmol) in ethanol (50 cm³) was stirred (10 h; 21 °C). The resultant golden-yellow solution was evaporated to dryness and the residue was extracted with dichloromethane (3 × 20 cm³). The filtrate extracts were evaporated to dryness, and the residue recrystallised from dichloromethane-pentane (-30 °C) to yield yellow prisms (1.10 g, 80%), m.p. 97-99 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of the conformationally isomeric complexes (6e) and (7e) [Found: C, 33.4; H, 4.2. ($C_{10}H_{15}ClO_5Pd)_2$ requires C, 33.6; H, 4.2%].

(d) In isopropyl alcohol. A similar reaction of [Pd(Me-CN)₂Cl₂] (1.0 g, 3.8 mmol), trans-2,3-dimethoxycarbonylmethylenecyclopropane (0.80 g, 4.7 mmol), and sodium carbonate (0.21 g, 2.0 mmol) in isopropyl alcohol (100 cm³) yielded after identical work-up, yellow prisms (1.24 g, 87%), m.p. 96—97 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of the isomeric complexes (6f), (6g), (7f), and (7g) [Found: C, 35.5; H, 4.7. (C₁₁H₁₇ClO₅Pd)₂ requires C, 35.6; H, 4.6%].

(e) In t-butyl alcohol. A similar reaction of $[Pd(MeCN)_2-Cl_2]$ (1.00 g, 3.8 mmol), trans-2,3-dimethoxycarbonylmethylenecyclopropane (0.80 g, 4.7 mmol), and sodium carbonate (0.21 g, 2.0 mmol) in t-butyl alcohol (70 cm³), yielded after identical work-up, yellow prisms (1.20 g, 81%). m.p. 91—93 °C (decomp.), shown by ¹H n.m.r. to consist of a mixture of the conformationally isomeric complexes (6h) and (7h) [Found: C, 37.6; H, 5.0. ($C_{12}H_{19}ClO_5Pd$)₂ requires C, 37.4; H, 4.9%]. Reactions of $[Pd(MeCN)_2Br_2]$ with trans-2,3-Dimethoxycarbonylmethylenecyclopropane.—(a) In dichloromethane. trans-2,3-Dimethoxycarbonylmethylenecyclopropane (0.50 g, 2.9 mmol) was added, with stirring, to a solution of $[Pd(MeCN)_2Br_2]$ (1.0 g, 2.8 mmol) in dichloromethane (50 cm³). The resultant precipitate was filtered off, washed with dichloromethane and pentane, and dried under vacuum to afford complex (5b) as an amorphous, dark brown powder (1.10 g, 88%), m.p. 103—105 °C (decomp.) [Found: C, 21.8; H, 2.1. $(C_8H_{10}Br_2O_4Pd)_2$ requires C, 22.0; H, 2.3%].

(b) In methanol. A solution of $[Pd(MeCN)_2Br_2]$ (1.00 g, 2.8 mmol), trans-2,3-dimethoxycarbonylmethylenecyclopropane (0.50 g, 2.9 mmol), and sodium carbonate (0.15 g, 1.4 mmol) was stirred (8 h; 21 °C). The resultant golden-yellow solution was evaporated to dryness and extracted with dichloromethane (3 × 20 ml). The filtered extracts were evaporated to dryness and the residue was recrystallised from dichloromethane–pentane to yield yellow needles (1.00 g, 90%), m.p. 97–99 °C (decomp.), shown by ¹H n.m.r. spectroscopy to consist of a mixture of the conformationally isomeric complexes (6c) and (7c) [Found: C, 28.0; H, 3.4. (C₉H₁₃BrO₅Pd)₂ requires C, 27.9; H, 3.4%].

An identical mixture of *complexes* (6c) and (7c) was prepared by treatment of a suspension of complex (5b) (0.50 g, 1.1 mmol) in methanol (50 cm³) with sodium carbonate (0.06 g, 0.6 mmol). The mixture was stirred (8 h; 21 °C) and worked up as above to yield the *product mixture* as yellow *needles* (85%), identified by ¹H n.m.r. spectroscopy.

Reactions of $[Pd(MeCN)_2Cl]$ with cis-2,3-Dimethoxycarbonylmethylenecyclopropane.—(a) In dichloromethane. A solution of $[Pd(MeCN)_2Cl_2]$ (3.00 g, 11.6 mmol) and cis-2,3-dimethoxycarbonylmethylenecyclopropane (2.00 g, 11.8 mmol) was stirred (1 h; 21 °C). The initial orange-yellow solution rapidly faded to a pale golden yellow. Evaporation, and recrystallisation of the residue from dichloromethanepentane yielded complex (8a) as fine yellow needles (3.80 g, 94%), m.p. 145—149 °C (decomp.) [Found: C, 27.8; H, 3.0. (C₈H₁₀O₄Pd)₂ requires C, 27.7; H, 2.9%].

A solution of complex (8a) (0.18 g, 0.5 mmol) and acetylacetonatothallium (0.18 g, 0.6 mmol) in dichloromethane (20 cm³) was stirred (1 h; 21 °C). Pentane (50 cm³) was added and the resultant suspension was filtered through a Kieselguhr plug. The resultant filtrate was evaporated to dryness and the residue recrystallised from pentane (-30 °C) to afford *complex* (8b) as pale yellow needles (0.17 g, 80%), m.p. 75-77 °C (decomp.) (Found: C, 38.0; H, 4.1. $C_{13}H_{12}ClO_8Pd$ requires C, 38.0; H, 4.1%).

A solution of complex (8a) (0.30 g, 0.8 mmol) and cyclopentadienylthallium (0.30 g, 1.1 mmol) in dichloromethane (20 cm³) was stirred (3 h; 21 °C), and filtered. Evaporation of the filtrate to dryness, and recrystallisation of the residue from pentane (--30 °C) yielded *complex* (8c) as red *prisms* (0.22 g, 68%), m.p. 121-123 °C (decomp.) [Found: C, 41.5; H, 4.1; Cl, 9.8. $C_{13}H_{15}ClO_4Pd$ requires C, 41.4; H, 4.1; Cl, 9.4%]

(b) In methanol. A mixture of $[Pd(MeCN)_2Cl_2]$ (1.00 g, 3.8 mmol), *cis*-2,3-dimethoxycarbonylmethylenecyclopropane (0.70 g, 4.1 mmol), and sodium carbonate (0.21 g, 2.0 mmol) in methanol (50 cm³) was stirred (0.5 h; 21 °C). The resultant golden yellow solution was evaporated to dryness and the residue was extracted with dichloromethane (3 × 20 cm³). The filtered extracts were evaporated to dryness, and the residue was recrystallised from dichloromethane-pentane to afford yellow *needles* (1.10 g, 83%), m.p. 122—125 °C (decomp.), shown by ¹H n.m.r. spectroscopy to consist of a mixture of the conformationally isomeric *complexes* (9a) and (10a) [Found: C, 31.6; H, 3.8; Cl, 10.5. (C₉H₁₃ClO₅Pd), requires C, 31.5; H, 3.8; Cl, 10.3%).

(c) In t-butyl alcohol. A similar reaction of $[Pd(MeCN)_2Cl_2]$ (1.0 g, 3.8 mmol), *cis*-2,3-dimethoxycarbonylmethylenecyclopropane (0.70 g, 4.1 mmol), and sodium carbonate (0.21 g, 2.0 mmol) in t-butyl alcohol (50 cm³) yielded, after an identical work-up, yellow *prisms* (1.00 g, 67%), m.p. 106—108 °C (decomp.), shown by ¹H n.m.r. spectroscopy to consist of a mixture of the conformationally isomeric complexes (9b) and (10b) [Found: C, 37.5; H, 5.0. ($C_{12}H_{19}$ -ClO₅Pd)₂ requires C, 37.4; H, 4.9%].

We are grateful to the S.R.C. for financial support.

[5/1857 Received, 26th September, 1975]